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Matrix properties of data from electrical capacitance tomography
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Abstract. Some properties of the matrix of capacitance-data collected by the electrical capacitance tomography
(ECT) technique are studied. These data are used to extract information in various industrial process applications
and, in particular, about flows in pipelines. The features in the eigenvalue distribution of normalized capacitance
matrices for three practical classes of permittivity distributions, namely core flows, annular flows, and stratified
flows, are investigated and compared by numerical solution. It is shown that the leading eigenvalue is strongly
related to the area ratio of permittivity contrast in the cross-section of the flow, while the next two eigenvalues
provide a basis for distinguishing among these three classes of flows. In particular, for core and annular flows,
the difference between the second and third eigenvalues is shown to be related to the eccentricity of permittivity
profile. Numerical examples are presented to illustrate how the area ratio for some permittivities that do not belong
to these classes can be effectively estimated.
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1. Introduction

In the last decade, the electrical capacitance tomography (ECT) technique has found applic-
ations in various industrial processes, such as flow profiling in oil pipelines in the petroleum
industry. As in other tomography techniques, the objective is to extract interior material profile
information from surface data. One parameter that is of practical interest, among others, is the
proportion or volume of a particular material flow, which is to be found without a detailed
knowledge of the actual profile of the flow over the cross-section. There have been numer-
ous studies of ECT in general by the engineering community, and some for the petroleum
application in particular. See e.g. [1–4] and references therein.

The typical setup of an ECT sensor consists of a ring of several thin rectangular metal
electrodes around the pipe or vessel, on either the exterior or interior wall of the pipe/vessel;
a schematic of the cross-section of a circular sensor with exterior electrodes is shown in
Figure 1. An excitation voltage is applied on one electrode (source), while the remaining elec-
trodes (detectors) are held at zero potential, and the charge on each of the detector electrodes
is measured, giving the source/detector capacitance distribution. This process continues until
each electrode in the sensor system has served once as a source electrode, thus completing
the collection of all mutual capacitance measurements between any pair of electrodes. Since
capacitance possesses reciprocity, the mutual capacitances for a specific pair of electrodes
are equal. Each self-capacitance is related to the corresponding mutual capacitances, and is
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usually not measured. Hence, there are �(� − 1)/2 independent capacitance measurements
for an �-electrode ECT sensor. This array of data can be conveniently arranged in a sym-
metric matrix (the capacitance matrix). The purpose of this study is to investigate how some
of the matrix properties of this data matrix are related to the material properties. Electrical
capacitance tomography and electrical impedance tomography (EIT) are very similar in their
mathematical formulation. In addition to be discussed in a large volume of engineering literat-
ure, EIT has also been the subject of many mathematical studies in the last two decades [5–8].
Each of these two problems can be formulated as an elliptic boundary-value problem for the
electric potential; both problems are concerned with the recovery of the elliptic coefficient
(permittivity in ECT and conductivity in EIT) from boundary measurements. In certain ideal
situations, the boundary measurements by EIT can be regarded as discrete realizations of the
Neumann-to-Dirichlet map, while ECT collects boundary data that are discrete realizations of
the Dirichlet-to-Neumann map. The important difference between the two problems pertains
to their area of applications. EIT is often used in medical applications where the main interest
is in finding the exact location/shape of the inhomogeneity in the conductive medium, while
ECT is applied more often to industrial processes such as gas/oil pipelines and gas/liquid/solid
pneumatic conveyers where more interest lies in estimating the volume proportion and flow
velocity of the dielectric materials. Generally speaking, by using EIT and ECT, we seek
different interior material attributes; EIT is often employed to find local/detailed attributes
such as the precise conductivity distribution of the media using many sets of data measure-
ments, and ECT is usually applied to extract global attributes such as area ratio in the contrast
of a permittivity profile from fewer sets of measurements. To the best of our knowledge,
there has been little effort devoted to exploring connections between the capacitance data
and global attributes in permittivity of the flow material. We note that similar problems arise
from electrical resistance tomography (ERT), and in particular, matrix properties related to
the material attributes for ERT are studied and used in the design of algorithms for image
reconstruction in references [9, 10]. Area/size estimates of an inclusion in the conductivity
using one measurement are established in reference [11].

In Section 2, we formulate the problem as an elliptic boundary-value problem for the
electric potential in a circular ECT sensor with exterior electrodes. The capacitance data are
often normalized, and are naturally arranged in a matrix. We then study in Section 3 the matrix
properties of the capacitance matrix using the PDE model, some of which are known to the
engineering community. In Section 4, we implement a finite difference numerical method
for solving the boundary-value problem, and present illustrative examples for comparison of
the raw and normalized capacitance matrices. We will see that normalization does enhance
the presence of the material differences in the capacitance data. In Section 5, we study nu-
merically the eigenvalue distributions of the normalized capacitance matrices. In particular,
we investigate and compare the features of eigenvalue distributions for three basic classes of
permittivity distributions that are most common in many industrial processes. It is shown that
the leading eigenvalue is strongly related to the area ratio of the region filled by the material
flow, while the next two eigenvalues contain distinctions among the three classes. Finally, we
present examples on how these findings can be used to successfully estimate the area ratio for
permittivities for some cases that are not exactly in these classes.
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2. Model description

We assume that the axial flow velocity is slowly-varying in time, so that a time-independent
model is adequate. Moreover, we assume that the flow variations are small along the axial
length of the electrodes, and the capacitance measurement is interpreted as giving average
cross-sectional information of the flow. Hence, we consider the cross-section, steady-state
model of an ECT sensor. We also assume that the sensor is protected from other electromag-
netic stray fields by a shield screen placed around the whole sensor.

The basic assumption of our formulation is that the materials within the sensor are all
linear dielectrics. That is to say, under mild electric field, the polarization is proportional to
the electric field, so that the displacement is proportional to the electric field within each
material.

To be more specific, we will formulate the problem for circular pipelines with exterior
electrodes. Suppose that the spatial dimensions are scaled to the exterior radius of the pipe,
and hence the cross-section of the region within the sensor can be represented by the unit disk
�, with the electrodes placed on the boundary ∂�. Suppose that the radial thickness of the pipe
wall is t0 (typically 5∼10% relative to the exterior radius of the pipe), and the cross-section of
the pipe interior is described by

�0 = {(x, y) : x2 + y2 < (1 − t0)
2}.

Suppose the electric field is determined by the electric potential u(x, y) over the cross-section
�, and there is no free space charge within the sensor. From Maxwell’s equations [12], the
potential u(x, y) inside the sensor area � is governed by

∇ · (ε∇u) = 0 in �, (1)

where ε = ε(x, y) is the (relative) permittivity distribution in �. By assuming a two-phase
flow, and scaling ε with the lower permittivity, we write

ε(x, y) =




ε(0)
r in � \ �0 (pipe wall),

εr in D ⊂ �0 (region of flow material of higher permittivity),

1 in �0 \ D (region of flow material of lower permittivity).

(2)

The low permittivity flow is often gas or vacuum. This form can be easily generalized to
describe more general cases of multi-phase flows. The permittivity relative to permittivity
of free space for most materials in these applications is larger than 1. For example, Perspex
(common material for pipes) has relative permittivity 2·56, and oil has permittivity 2·10, while
for water it is about 80.

Consider � identical electrodes identified with the subsets �i of ∂� (i = 1, · · · , �), equally
spaced on the unit circle ∂�, and ordered counter-clockwise. Figure 1 shows a schematic
of the cross-section of a 12-electrode circular ECT sensor. On each metal electrode �i , the
voltage is constant, and its value Vi is specified. Hence, a Dirichlet boundary condition for the
potential holds on each �i . On the gaps between electrodes, we assume that there is no charge
on that part of the boundary, hence the homogeneous Neumann boundary condition holds for
the potential. Therefore, for a given vector of applied voltage �v = [V1, V2, · · · , V�]T , the ECT
sensor will collect a vector of charges �q = [q1, q2, · · · , q�]T , each qk representing the charge
on electrode k:

qk =
∫

�k

ε
∂u

∂ν
ds,
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Figure 1. Schematic of the cross-section of a 12-electrode ECT sensor.

where u is the potential satisfying (1) with boundary conditions


u = Vk on �k (k = 1, 2, , · · · , �)
ε
∂u

∂ν
= 0 on ∂� \ ∪�

k=1�k.
(3)

The relation between �v and �q is linear, and its matrix representation C = [Cij ]�×� is known as
the capacitance matrix, defined by

�q = C�v.

In addition to the geometric configuration of the sensor, the capacitance matrix depends
mainly on the permittivity distribution: C = C(ε). It is from this matrix, C, that we would
like to extract information on the permittivity distribution.

The capacitance data in C are often collected by the following experimental setup. An
excitation voltage Vj = 1 is applied on one electrode (the ‘source’ (or j th) electrode) while
keeping all others (the ‘detector’) at zero potential Vi = 0 (i �= j ), and the charges qi on
these detectors are measured. That is, �v is set to �ej (the standard basis vector in R�) so that the
measurements �q are exactly the j th column of C. Specifically, if we denote by uj the potential
corresponding to the voltage excitation vector �v = �ej , then we have

Cij =
∫

�i

ε
∂uj

∂ν
ds. (4)

The entries Cij (i �= j ) in the capacitance matrix C are the mutual capacitance between
the source electrode j and the detector electrode i, and they possess the reciprocity relation
Cij = Cji . The capacitance Cii is the self-capacitance, which is not measured but related to
the corresponding mutual capacitances by

Cii = −
∑
k �=i

Cik.

These properties will be rigorously established in the next section; see Proposition 1. This pro-
cess of collecting the capacitance data is referred to as the single-electrode excitation method.
The multiple-electrode excitation method has also been investigated recently in reference [3].
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In practice, because the capacitances Cij are usually low-intensity signals, some normal-
ization is needed. Common ways of normalization use the capacitances from two extreme
permittivity distributions, i.e., cases with D = ∅ and D = �0 in (2). Let

ε low(x, y) =
{

ε(0)
r in � \ �0,

1 in �0

and

εhigh(x, y) =
{

ε(0)
r in � \ �0,

εr in �0.

Suppose C low = [C low
ij ]�×� and Chigh = [Chigh

ij ]�×� are the capacitance matrices corresponding to
ε low and εhigh, respectively. Based on either parallel or series capacitance models [13], there are
two different ways of normalizing the capacitance data Cij with a nontrivial D ⊂ �0,

ξij = Cij − C low
ij

C
high
ij − C low

ij

, (5)

and

ξ̃ij =
1

C low
ij

− 1

Cij

1

C low
ij

− 1

C
high

ij

. (6)

We denote the corresponding matrices by � = [ξij ]�×� and �̃ = [ξ̃ij ]�×�, respectively. Note
that these normalized capacitance matrices � and �̃ reduce to the zero matrix when D = ∅,
and to the matrix of all 1’s when D = �0, although the entries ξij or ξ̃ij are not necessarily
between 0 and 1. These normalizations are expected to reduce the effect of the geometric setup
and to enhance the presence of the material with permittivity εr > 1.

3. Properties of the capacitance matrix

In this section, we establish some properties of the capacitance matrix C. Some of these
properties are well known in the engineering literature (e.g. [3]). Here, we show how they
can be derived from the PDE model.

The boundary-value problem described by (1) with (3) can be stated in the weak form. We
say that u is an H 1 weak solution to (1) with (3) if u ∈ H 1(�) satisfies

u|�k
= Vk (k = 1, · · · , �) and

�
�

ε∇u · ∇φ dxdy = 0 for all φ ∈ V, (7)

where

V ≡ {φ ∈ H 1(�) : φ|∪�
k=1�k

= 0}.
Existence of a unique weak solution can be established in standard fashion. It is known that the
derivatives of the solution possess singularities near the joins between Dirichlet and Neumann
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boundary conditions. Since ε∇u is divergence-free, ε∇u · ν is in H−1/2(∂�), and satisfies the
Green’s identity�

�

ε∇u · ∇φ dxdy =
∫

∪�
k=1�k

ε
∂u

∂ν
φ ds for all φ ∈ H 1(�), (8)

where the right-hand side is understood as the dual pair of H−1/2(∂�) and H 1/2(∂�). In
particular, the capacitance Cij in (4) is the numerical value of the dual pair on particular test
functions φ which have trace value 1 on �i , and 0 on the other �k’s.

We can establish the maximum principle for the weak solution u without requiring further
analytic regularities of the solution. Let V = mink Vk and V = maxk Vk. For φ = min(u, V ),
we see that φ ∈ V and ∇φ = ∇u. Hence |∇φ| = 0 by (7), and thus φ = 0 almost everywhere
(a.e.) in �. Therefore u ≥ V a.e. in �. Similarly we can show that u ≤ V a.e. in �. Hence,
the weak solution u ∈ H 1(�) satisfies the maximum principle

min
k

Vk ≤ u(x, y) ≤ max
k

Vk a.e. in �. (9)

In Equation (8) for uj , if we set φ = ui , we see immediately that the capacitance Cij as
given in (4) can be expressed as

Cij =
�
�

ε∇ui · ∇uj dxdy, (10)

and the capacitance matrix C = [Cij ] is expressed conveniently as

C =
�
�

ε(∇�u)(∇�u)T dxdy, (11)

where we denote

�u =




u1

u2
...

u�


 and ∇�u =




∂xu1 ∂yu1

∂xu2 ∂yu2
...

...

∂xu� ∂yu�


 .

This alternative representation of the capacitance data, (10) or (11), is helpful in establishing
the following results on the properties of matrix C.

PROPOSITION 1. The capacitance matrix C is symmetric, semi-positive definite with rank
� − 1, and its entries satisfy

Cii > 0,

�∑
k=1

Ckj =
�∑

k=1

Cik = 0 for i, j = 1, 2, · · · , �. (12)

If, in addition, the solution ui has continuous normal derivative up to each �j , then Cij < 0
for i �= j .

Proof. Formula (11) clearly shows that the capacitance matrix C is symmetric indeed. In
addition,

�ζ T C�ζ =
�
�

ε∇(

�∑
k=1

ζkuk) · ∇(

�∑
k=1

ζkuk) dxdy ≥ 0 for any �ζ ∈ R�, (13)
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which implies the semi-positive definiteness of C.
Next, we let w(x, y) = ∑�

k=1 uk(x, y) − 1. Then w ∈ V and, from (7) for uj ,�
�

ε∇uj · ∇w dxdy = 0, j = 1, 2, · · · , �. (14)

Summing up (14) for j from 1 to � yields�
�

ε|∇w|2 dxdy = 0,

which implies that w ≡ 0 a.e. in �. Hence, for �η = [1, 1, · · · , 1]T , we have

C �η =
�
�

ε(∇�u)(∇�u)T �η dxdy =
�
�

ε(∇�u)(∇w)T dxdy = �0. (15)

That is, �η �= �0 is in the nullspace of C. Thus C is singular and rank(C) ≤ � − 1. On the other
hand, for any vector �ζ in the nullspace of C, we see from (13) that

0 =
�
�

ε∇(

�∑
k=1

ζkuk) · ∇(

�∑
k=1

ζkuk) dxdy.

Therefore

�
�

|∇(

�∑
k=1

ζkuk)|2dxdy = 0, hence
�∑

k=1

ζkuk(x, y) ≡ α (constant).

On each �k ,
∑�

i=1 ζiui(x, y) = ζk . Therefore ζk = α for all k = 1, 2, · · · , �. That is, �ζ = α�η.
Thus we have shown that the nullspace of C is exactly the one-dimensional space spanned by
�η. Therefore, rank(C) = � − 1.

The positivity of the main diagonal entries (self capacitance) Cjj > 0 follows immediately
from (10). Relation (15) and the symmetry of C also imply that the sum over each row or
column of C is zero. Thus, (12) is established. With the additional continuity assumption on
the normal derivative of the solution, we can show that all other capacitances Cij < 0 for
i �= j . Indeed, from the maximum principle (9), we have 0 ≤ uj ≤ 1 in �. On each �i with

i �= j , uj = 0 and hence
∂uj

∂ν
≤ 0. Therefore Cij =

∫
�i

ε
∂uj

∂ν
ds ≤ 0. If Cij = 0, then

∂uj

∂ν
= 0 on �i , and thus uj would have zero Cauchy data on �i , which would in turn lead to

uj ≡ 0 throughout �, a contradiction. Therefore, Cij < 0 for i �= j . �

Therefore, for an �-electrode sensor, the �(�−1)/2 independent capacitance measurements
comprise the entries of the upper or lower triangle of C; the other half of C is filled by
symmetry, and the diagonal entries are computed by (12).

The capacitance matrix clearly depends on how the electrodes are numbered. For two
different numberings of the electrodes, the relation between the corresponding capacitance
matrices can be easily derived from formula (11).
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PROPOSITION 2. In the same geometric setting, suppose that C and C ′ are the capacitance
matrices corresponding to two different numberings of the electrodes, say (1, 2, · · · , �) and
(i1, i2, · · · , i�), respectively. Then

C ′ = PCP T = PCP −1, (16)

where P is the permutation matrix in [i1, i2, · · · , i�]T = P [1, 2, · · · , �]T . Hence, C and C ′
have the same eigenvalue distribution.

This proposition has useful implications. If the permittivity distribution ε ′ is the result
of rotating the permittivity ε by an integer multiple of 2π/� angle, then the corresponding
capacitance matrices also obey relation (16). Specifically, if

ε ′(x, y) = ε ′(r cos θ, r sin θ) = ε(r cos(θ − k
2π

�
), r sin(θ − k

2π

�
)) (17)

for some 1 ≤ k ≤ � − 1, then the capacitance matrix C ′ corresponding to ε ′ is related to
the capacitance matrix C corresponding to ε by (16), with P being the permutation matrix
that shifts [1, 2, · · · , �]T to [k, · · · , �, 1, · · · , k − 1]T . In particular, C and C ′ have the same
eigenvalue distribution. Since such a rotation does not change the area of D, we should search
for properties of the matrix that are invariant under such similarity transformations to serve as
an indicator for the area |D|. Eigenvalues are obvious candidates.

In the following, we assume that the electrodes are ordered on the unit circle counter-
clockwise, as depicted in Figure 1. We will consider further the case of radial symmetric
permittivities, such as central core flows and central annular flows. In fact, all we require is
that ε is radially symmetric with respect to the the � electrodes: ε ′ ≡ ε in (17) for all k. This
includes also shapes like �-polygons. Note that, in such cases, all the self-capacitances Cii are
equal.

PROPOSITION 3. If ε is radially symmetric with respect to the � electrodes, then the capa-
citance matrix C is a symmetric circulant matrix, and its real eigenvalues (λ0, λ1, · · · , λ�−1)

satisfy

λ0 = 0 < λk = λ�−k < 2Cii (k = 1, 2, · · · , � − 1).

Proof. Let �c = [c0, c1, · · · , c�−1]T = [C11, C21, · · · , C�1]T be the vector of capacitances with
number 1 electrode as the source electrode. This will be the first column of the capacitance
matrix C. From (12), we have

c0 > 0, ck < 0 (k = 1, 2, · · · , � − 1) and c0 = −
�−1∑
k=1

ck. (18)

The self-capacitances Cii are all equal to c0. Since electrode k + 1 and electrode � − k + 1 are
in symmetric positions with respect to the source electrode 1, and likewise the permittivity,
we can easily see that the mutual capacitances of the two pairs (1, k + 1) and (1, � − k + 1)

are equal,

ck = c�−k for k = 1, · · · , � − 1. (19)
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The second column of C consists of the capacitances when the number 2 electrode is the
source electrode. But clearly this vector would be exactly �c, except for one ‘downshift’ in the
entries: [c�−1, c0, c1, · · · , c�−2]T . The following columns of C have the same property: each
column is the one-position downshift of its previous column, wrapping the last entry back to
the beginning. In fact this is also true for rows of C. Therefore, C indeed is a circulant matrix,
generated by �c. Relation (19) or Proposition 1 implies that C is also symmetric.

A nice property of a circulant matrix is that the vector consisting of the eigenvalues is the
discrete Fourier transform of its generating vector [14]:



λ0

λ1

λ2
...

λ�−1


 =




1 1 1 · · · 1
1 w w2 · · · w�−1

1 w2 w4 · · · w2(�−1)

...
...

...
. . .

...

1 w�−1 w2(�−1) · · · w(�−1)2







c0

c1

c2
...

c�−1




where w = e−2π i/�. Because of (18), we see immediately that λ0 = 0. Due to the symmetry
(19), the other eigenvalues are real and satisfy the relation λk = λ�−k. Notice that each λk

is of the form c0 + ∑�−1
k=1 αkck with coefficients αk ∈ [−1, 1], not all equal. Therefore, each

eigenvalue has a strict lower bound of c0 + ∑�−1
k=1 ck = 0 and a strict upper bound of c0 +∑�−1

k=1(−ck) = 2c0 = 2Cii , both by (18). �

Since normalizations (5) and (6) are done component-wise for the matrix C, some prop-
erties of C, such as symmetry and circulancy, can be carried over to the normalized matrices
� and �̃. But most other properties, such as positive definiteness and rank, cannot be carried
over in general. We summarize the results on the normalized matrices below.

PROPOSITION 4. Let � and �̃ be the normalized capacitance matrices defined by (5) and
(6), respectively. Then
1. � and �̃ are symmetric.
2. If two permittivity distributions are discrete rotations of each other as in (17), then their

corresponding normalized capacitance matrices � (or �̃) are related by a permutation
matrix as in (16). Hence, they have the same eigenvalue distribution.

3. If ε is radial symmetric with respect to the � electrodes, then � and �̃ are also circulant,
and each has at most [ �+1

2 ] + 1 distinct eigenvalues.

It will be seen in our numerical examples that the normalized matrices � and �̃ are usually
non-singular when D �= ∅, but not positive-definite. A detailed discussion of the eigenvalue
distributions of � and �̃ will be presented in Section 5.

4. Numerical solution

When the gaps between the electrodes are zero, it is possible to solve the problem (1–3)
analytically by elementary methods (separation of variables, conformal mapping) for special
cases of permittivities such as those corresponding to central core and central annular flows
[15]. However, for cases of nonzero gaps or other flow configurations, these solution methods
no longer apply, and we must rely on numerical solutions. In this section, we implement a
standard 5-point finite difference scheme for the equations in polar coordinates, and present
some illustrative examples.
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The boundary-value problem (1) with (3) in polar coordinates (r, θ), with the usual num-
bering for the electrodes, takes the form



r
∂

∂r

(
rε

∂u

∂r

)
+ ∂

∂θ

(
ε
∂u

∂θ

)
= 0 in {(r, θ) : 0 ≤ r < 1, 0 ≤ θ < 2π},

u = Vk on {(r, θ) : r = 1, θ ∈ Ik} (k = 1, · · · , �),

ε
∂u

∂r
= 0 on {(r, θ) : r = 1, θ ∈ [0, 2π) \ ⋃�

k=1 Ik}

(20)

where Ik denotes the angular interval for the kth electrode on r = 1,

Ik = [(k − 1)
2π

�
+ δ

2
, k

2π

�
− δ

2
] for k = 1, 2, · · · , �,

and δ is the gap angle between electrodes.
Given two integers n and m, we set up a finite-difference grid

(ri, θj ) = (i�r, j�θ) with �r = 1

n
, �θ = 2π

m
,

for i = 0, 1, · · · , n and j = 0, 1, · · · ,m. On each polar ‘pixel’, we assume the permittivity is
a constant:

ε(r, θ) = εi+ 1
2 ,j+ 1

2
on [ri, ri+1] × [θj , θj+1],

for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. The central difference approximation of the equation
at nodal point (i, j) reads

ri

(�r)2

(
(rε)i− 1

2 ,jUi−1,j − ((rε)i− 1
2 ,j + (rε)i+ 1

2 ,j )Uij + (rε)i+ 1
2 ,jUi+1,j

)

+ 1

(�θ)2

(
εi,j− 1

2
Ui,j−1 − (εi,j− 1

2
+ εi,j+ 1

2
)Uij + εi,j+ 1

2
Ui,j+1

)
= 0

(1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1), with boundary conditions discretized accordingly. At
r = 0 (i = 0), we use the condition ∂u

∂r
= 0, and at θ = 2π (j = 0 and j = m), we use the

periodicity u(r, 0) = u(r, 2π) and uθ(r, 0) = uθ(r, 2π),

U1,j = U0,j = U0,0, Ui,0 = Ui,m and Ui,1 = Ui,m+1.

In the following numerical example, we choose model parameters

� = 12, δ = π

20
= 9◦ (gap angle), t0 = 0·1, ε(0)

r = 2·56, εr = 2·1,

D = {(x, y) ∈ �0 : x2 + (y + 0·45)2 ≤ 0·42},
and a grid with

�r = 1

n
= 1

50
and �θ = 2π

m
= 2π

240
.

The permittivity distribution ε and equipotential lines of u1 (single source electrode at elec-
trode 1) are depicted in Figure 2.
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Figure 2. Permittivity distribution ε(x, y) and equipotential lines for the potential u1(x, y) when electrode 1 is
the single source electrode.

The calculation was repeated with the source electrode moved around, so that the capa-
citance matrix can be obtained. The capacitance data are presented in Figure 3, where the
raw capacitance matrix C is on the top row, the normalized capacitance matrix �, (5), in the
middle, and the normalized capacitance matrix �̃, (6), on the bottom. In each case, the entries
of the matrix are plotted column after column on the left, while the entries are presented as
the heights at their matrix positions on the right. It is clear that normalization does enhance
the capacitances from electrodes 9 and 10, which are closest to the flow area D.

5. Eigenvalues of normalized capacitance matrices

In this section, we use the numerical method described in Section 4 to investigate numerically
the relation between the eigenvalue distribution of the normalized capacitance matrices �

and �̃ and the permittivity distribution ε. We will restrict ourselves to certain classes of
permittivity distributions that are common and important in applications. These are:

Stratified flows: D = {(x, y) : x cos θ0 + y sin θ0 ≥ d}, (21)

Core flows: D = {(x, y) : (x − d0 cos θ0)
2 + (y − d0 sin θ0)

2 ≤ r2
0 }, (22)

Annular flows: D = {(x, y) : (x − d0 cos θ0)
2 + (y − d0 sin θ0)

2 ≥ r2
0 }, (23)

where the parameters θ0, d, d0, and r0 satisfy the constraints

0 ≤ θ0 < 2π, |d| ≤ 1 − t0, d0 ≥ 0, r0 ≥ 0, and d0 + r0 ≤ 1 − t0.

These three classes of permittivity distributions are depicted in Figure 4.
In the following, we investigate numerically the unique features of the eigenvalue dis-

tribution of the normalized capacitance matrix � or �̃ for each of these three classes of
permittivity distributions, so that these features can be used for the purpose of parameter
identification/estimation.
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Figure 3. The raw capacitance matrix C and normalized capacitance matrices � and �̃, for the permittivity
distribution shown in Figure 2.
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Figure 4. The three common classes of permittivity distributions.

Figure 5. The eigenvalues of � (left) and �̃ (right) plotted against θ0 for the stratified flows (21), with d = 0·4.

Example 1: Independence on the angular position θ0. From Proposition 4, we know that,
for each of these classes, the eigenvalues of � and �̃ are invariant under discrete increments of
θ0 (integer multiples of 2π/�). Our numerical experiments show that the eigenvalues remain
relatively unchanged as θ0 varies through values that are not integer multiples of 2π/�. In
Figure 5 we plot the eigenvalues for the stratified flows (21) with θ0 taking the values 3kπ/13
for k = 0, 1, · · · , 8. Clearly the eigenvalues almost remain the same for these values of θ0,
with small fluctuations due to likely numerical errors. It is also the case for the core flows
(22) and annular flows (23). Therefore, in studying the eigenvalues of � and �̃ for these
three classes, we can eliminate θ0 as a parameter. Hence, the core flows and annular flows are
characterized by r0 and d0, while the stratified flows are determined by only one parameter, d.

Example 2: Eigenvalue distributions of stratified flows. In this example, we illustrate the
eigenvalue distribution of � and �̃ for the class of stratified flows (21). We set θ0 = 0 and
vary d from −0·8 to 0·8. In Figure 6, we plot the 12 eigenvalues of � and �̃ against the area
ratio |D|/|�0|. We see that the leading eigenvalue of either � or �̃ is a robust indicator of the
area ratio, and can be used to identify the only parameter d within the class.

Example 3: Eigenvalue distributions of core flows. There are two parameters in this class:
the radius r0 and the eccentricity d0. When d0 = 0, the permittivity distributions are radially
symmetric. Hence � and �̃ are circulant, and there are exactly 7 distinct eigenvalues in
these examples. As d0 becomes nonzero, symmetry is lost, and so is the multiplicity of the
eigenvalues. The eigenvalues are plotted in Figure 7 against the area ratio |D|/|�0|, for both
concentric case (top) and eccentric case (bottom).
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Figure 6. The eigenvalues of � (left) and �̃ (right) plotted against the area ratio |D|/|�0| for the stratified flows
(21), with θ0 = 0.

Figure 7. The eigenvalues of � (left) and �̃ (right) plotted against the area ratio |D|/|�0| for the core flows (22),
with θ0 = 0.
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Figure 8. The eigenvalues of � (left) and �̃ (right) plotted against the eccentricity d0 for the core flows (22), with
r0 = 0.4 and θ0 = 0.

For convenience, let us label the eigenvalues in descending order of absolute values:

|τ1| ≥ |τ2| ≥ · · · ≥ |τ�|.
Note that the leading eigenvalue τ1 is positive and simple, and nearly linear in the area ratio,
while the second largest in absolute value is negative and has multiplicity 2 (τ2 = τ3 < 0). As
the eccentricity d0 becomes nonzero, τ2 and τ3 remain negative but grow apart. To better see
the effect of the eccentricity d0, in Figure 8 we plot the eigenvalues as d0 varies while r0 is held
fixed. Note that in this case the area ratio is fixed (Figure 8). Hence, we see that the leading
eigenvalue τ1 alone would not be able to accurately describe the area ratio |D|/|�0|; it should
be adjusted by eccentricity. Moreover, the eigenvalue distributions are almost identical for all
small values of eccentricity d0, which seems to indicate that central flows are more difficult
for circular ECT sensor to locate/detect.

Next, we investigate the use of the leading eigenvalue τ1 and the difference |τ2 − τ3| as
joint indicators of the core flows (22). Over the parameter domain

{(d0, ρ) : d0 ≥ 0, ρ ≥ 0, d0 + 0·9√
ρ ≤ 0·9},

where ρ represents the area ratio ρ = |D|/|�0| = r2
0/0·92, we plot the surfaces of τ1 and

|τ2 − τ3| of �̃ in Figure 9. We can see that, indeed, for most cases, these two parameters are
capable of identifying both the eccentricity and area ratio of a core flow, except when either
one is small (i.e., when the core is small or near the center). We present the calculations for �̃

only, since these features are slightly more enhanced in �̃ than in �.
Example 4: Eigenvalue distributions of annular flows. We study the case of annular flows

described by (23). The eigenvalues are plotted as functions of the area ratio |D|/|�0| in
Figure 10, for the concentric case in (a) and an eccentric case in (b). As in the case of core
flows, the leading eigenvalue τ1 is positive, simple, and nearly linear in the area ratio, and τ2

and τ3 are equal for concentric flows and distinct for eccentric ones.
However, one significant difference here is that τ2 and τ3 are positive. Moreover, we see

that τ1 remains almost unchanged as eccentricity d0 varies in Figure 11. Therefore, the leading
eigenvalue τ1 seems to be a strong indicator of the area ratio for this class of permittivities,
independent of eccentricity. The two surfaces τ1 and |τ2 − τ3| are presented in Figure 12, over
the parameter domain

{(d0, ρ) : d0 ≥ 0, 0 ≤ ρ ≤ 1, d0 + 0·9√
ρ ≥ 0·9}.



142 Weifu Fang and Ellis Cumberbatch

Figure 9. Surfaces of τ1 (left) and |τ2 − τ3| (right) for �̃, as functions of eccentricity d0 and area ratio |D|/|�0|,
for the core flows (22).

If desired, the difference |τ2 − τ3| can be used to help identify the eccentricity, in addition to
the area ratio. However, it seems difficult to do so when d0 is small and the area ratio is large,
which is the case when the void is near the center and small. In particular, from Figure 11, the
capacitance data seem indifferent to the location of the void near the center of the sensor.

From our numerical results, it is clear that the first few leading eigenvalues do provide
distinctive and descriptive information about the permittivity distributions among the three
basic classes (21–23). We summarize our observations as follows. For all three classes, the
largest eigenvalue τ1 is positive and simple, and nearly linear in the area ratio |D|/�0|.
The next two eigenvalues τ2 and τ3 contain information that distinguishes the permittivity
distributions among the three classes:

core flows: τ2 ≈ τ3 and both are negative,

annular flows: τ2 ≈ τ3 and both are positive,

stratified flows: τ2 and τ3 are more likely to have opposite signs.

Note that when the area |D| is small, these characterizations of the flow types may not be
necessarily accurate. In most cases, these descriptions provide us with criteria to successfully
identify the parameters about the permittivity within these classes, and sometimes help pro-
duce good approximations to permittivities that are not exactly in any one of these classes. We
illustrate this idea in the following example.

Example 5: Area ratio estimates. We test the idea of using our findings on the eigenvalues
of the normalized capacitance matrix to estimate the flow area ratio of permittivity distribu-
tions that are similar but not exactly as the three classes. The one on the left (denoted by εtest1)
of Figure 13 mimics a stratified flow, while the one on the right (denoted by εtest2) mimics an
eccentric flow.

We use normalization (6) in these examples. The first three eigenvalues of their normalized
capacitance matrix �̃ are

εtest1 : τ1 = 7·0942, τ2 = −2·2893, τ3 = 0·9607;
εtest2 : τ1 = 3·9834, τ2 = −2·7648, τ3 = −2·4549.

Using the characterization summarized above, we see that εtest1 indeed resembles a stratified
flow, while εtest2 is similar to a core flow.

For εtest1, we use stratified flows (21) as approximations to find an estimate for the area ratio
|D|/|�0|. Since there is only one parameter d for this class, we use τ1 from εtest1 to match with
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Figure 10. The eigenvalues of � (left) and �̃ (right) plotted against the area ratio |D|/|�0| for the annular flows
(23), with θ0 = 0.

Figure 11. The eigenvalues of � (left) and �̃ (right) plotted against the eccentricity d0 for the annular flows (23),
with r0 = 0·4 and θ0 = 0.
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Figure 12. Surfaces of τ1 (left) and |τ2 − τ3| (right) for �̃, as functions of eccentricity d0 and area ratio |D|/|�0|,
for the annular flows (23).

Figure 13. Test examples of permittivity distributions εtest1 (left) and εtest2 (right) that are not exactly within the
three classes. The solid lines are our approximations by using the eigenvalues.

Table 1. Area ratio estimate for the test example εtest1.

εtest1 stratified approximations

d ′ = −0·12 d ′′ = −0·11

τ1 7·0942 7·0734 7·1229

0·4177 0·4246

|D|/|�0| 0·4213 0·4206
(by interpolation)

that of a stratified flow. Matching is done through the following procedure: first, we find the
two parameters d ′ and d ′′ such that τ1 is contained in the corresponding interval [τ ′

1, τ
′′
1 ], and

then we use linear interpolation to find the area estimate for ρ from [ρ ′, ρ ′′]. The results are
presented in Table 1. As can be seen, this method does provide an excellent estimate for the
area ratio (relative error of 0·17%).

As for εtest2, if we use only the concentric core flows ((22) with d0 = 0) as approximations
by simply matching up the leading eigenvalue τ1, we would obtain an estimate for the area
ratio with a relative error of about 9·44%. In the following, we illustrate how the use of |τ2−τ3|
will effectively improve the area ratio estimate for this permittivity εtest2. We use core flows (22)
as approximations, and the two parameters, eccentricity d0 and radius r0, will both be used to
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Table 2. Area ratio estimate for the test example εtest2.

εtest2 core approximations

(d ′
0, r ′

0) (d ′′
0 , r ′

0) (d ′
0, r ′′

0 ) (d ′′
0 , r ′′

0 )

(0·24, 0·52) (0·26, 0·52) (0·24, 0·54) (0·26, 0·54)

τ1 3·9834 3·7411 3·7977 4·0223 4·0852

|τ2 − τ3| 0·3129 0·2790 0·3280 0·2947 0·3446

0·3284 0·3288 0·3547 0·3544

0·3286 0·3545|D|/|�0| (by average) (by average)

0·3444 0·3481
(by interpolation using τ1)

match τ1 and |τ2−τ3|, and an alternate search strategy: search for r0 to match τ1, and search for
d0 to match |τ2 − τ3|. Starting with d0 = 0, we search for the r0 (with increment �r0 = 0·02)
whose corresponding τ1 is the closest underestimate to that of εtest2, and then, using this r0,
search for the d0 (with increment �d0 = 0·02) whose corresponding |τ2 − τ3| is the closest
underestimate of that of εtest2, and so on. This process will terminate with the underestimate
pair (d ′

0, r
′
0). Repeat the process for the overestimate pair (d ′′

0 , r ′′
0 ). We will also use the other

pairs (d ′
0, r

′′
0 ) and (d ′′

0 , r ′
0) for the estimate. These four pairs of parameter points can be actually

determined by using pre-computed tables for τ1 and |τ2 − τ3| in terms of d0 and r0. From the
leading eigenvalues τ1 for these four pairs, we find an estimate for the area ratio by using
linear interpolation in τ1, after a simple averaging over d ′

0 and d ′′
0 . The results are presented in

Table 2. The estimate has a relative error of 1·07%, which is clearly an improvement over the
case without using the eccentricity estimate.

6. Conclusions

Our main interest in this study has been to explore connections between capacitance data and
the area ratio of permittivity contrast in electrical capacitance tomography. We formulated a
mathematical model by using boundary-value problems for electric potentials in the sensor
area. This model generated quantitative relations between the permittivity and the capacit-
ance data, and, with these relations, we established some matrix properties of the capacitance
data. Normalization of capacitance data is common in practice in helping extract permittivity
information from the data, and we determined some matrix properties for normalized capa-
citance matrices. One particular result is that rotations in permittivity profile correspond to
similar capacitance matrices. Since similar matrices have the same eigenvalue distribution
and rotation of permittivity profile does not change the area ratio of permittivity contrast,
we investigated the relation between the eigenvalues of normalized capacitance matrices and
the area ratio of the permittivity distribution. We implemented a finite difference method to
solve numerically the boundary-value problems in the more convenient polar coordinates.
We specifically focused our investigation on the three common, practical classes of flows:
stratified flows, core flows, and annular flows. Through numerical examples, we illustrated
a strong correlation between the leading eigenvalue of the normalized capacitance matrices
and the area ratio of the flow. We also found that the next two eigenvalues contain distinct-
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ive information about the configuration of the flow among the three classes of permittivity
distributions. In particular, for core and annular flows, the difference between the second
and third eigenvalues was shown to be related to the eccentricity of the flow. These findings
can be used to provide good estimates for the area ratio, and we demonstrated by numerical
examples how this idea can be successfully implemented for some permittivities that are not
exactly within these three classes. This estimation technique may also be applied to provide
an excellent initial guess for iterative image reconstruction algorithms ([4]) thereby improving
convergence of the reconstruction process.
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